
LLM for notary
documents
Fine tuning a pre-existing LLM to
generate legitimate notary contracts

Hephaestus Applied Artificial Intelligence Association

Authors:

Member Role

Ali Emre Senel Co-Head
Giuseppe Iannone Co-Head

Lorenzo Calda Member
Maria Ester Massari Member

Stefano Mauloni Member
Edoardo Panella Member

Milan, February 5, 2024

Contents

1 Introduction 2
1.1 Aim of the project . 2
1.2 Why Artificial Intelligence? . 2
1.3 Basic knowledge about notary contracts . 2
1.4 Our approach . 1

2 Our path 2
2.1 Data set . 2
2.2 Formatting the Dataset . 2
2.3 Fine tune the Model(s) using LLama . 2
2.4 Fine tune the Model(s) using Gpt 3.5 . 3
2.5 Create the final contract . 4

3 Conclusions 5

4 References 6

LLM for notary
documents

1 | Introduction

Compared to more fast-moving and tech-savvy industries like finance, retail and the automotive industry,
the legal world is known for being more hesitant and consequently slower to adopt and integrate new
technologies. There are many reasons that demand and justify a more risk-averse and cautious approach
to technology integration of an industry that relies on data security and confidentiality, accuracy and
reliability, regulatory compliance, client trust and professionalism.

However, this slow adoption has significant consequences, while recent advancements in artificial in-
telligence present unprecedented opportunities. Legal professionals face a heavy load of manual and
time-intensive tasks that could be automated, reducing their capacity to focus on more complex legal
issues. Consequently, clients experience delays and high costs in legal processes. The resulting high waiting
times and costs also pose significant barriers impacting access to justice.

However, the advent of advanced artificial intelligence, particularly Large Language Models (LLMs),
signals a potential paradigm shift. These technologies promise not only to automate routine legal tasks,
enhancing efficiency and accuracy while also upholding the sector’s core values. Recognizing this potential,
this project seeks to bridge this technological gap in the legal domain, specifically targeting the automation
of property transaction contracts for Italian notaries. With a staggering 48% of legal contracts in Italy in
2022 being related to property transactions, the potential for impact is significant. Our solution harnesses
the power of advanced Artificial Intelligence, particularly Large Language Models (LLMs), to bring about
a paradigm shift in how legal professionals handle routine tasks.

1.1 | Aim of the project
Our project aims to develop a user-friendly fine-tuned LLM that can generate a ready-to-use notarial
contract from a simple prompt. While the intended primary users are notaries and their assistants the
tool’s simplicity and efficiency make it accessible to other legal experts. By automating the drafting
process, we aim to reduce costs, increase efficiency, and allow legal professionals to focus on more nuanced,
complex and strategic aspects of their work.
Our project focuses on the purchase and sale of property, as it is the most common type of contract in
Italy (48% of contracts in 2022, as shown in Dati statistici Notarili). We see this project as a starting
point, if our approach proves successful we aim to extend its use case to other contract types. Further, we
strive to iteratively progress towards a tool that can tackle a broad array of notary tasks and serve as a
comprehensive notary assistant.

1.2 | Why Artificial Intelligence?
Given the complexity of the legal field, marked by diverse case types and legal entities, traditional rule-
based software development approaches are inadequate. The variability and nuance in drafting notarial
contracts cannot be effectively addressed with rigid ’if-then’ command chains typical of conventional
software.
In contrast, AI doesn’t just follow predetermined rules; it learns and infers them from large datasets of
legal texts. This learning capability allows AI to understand and replicate the complex patterns and
decision-making processes found in legal practice. As a result, AI can navigate the nuances and contextual
variations of legal contracts more effectively than traditional software. However, this capability hinges on
the availability and quality of the data used for training. When sufficiently rich and representative data is
provided, AI becomes an exceptionally flexible, adaptable, and scalable tool, capable of evolving with the
legal landscape and continuously improving its output quality.

1.3 | Basic knowledge about notary contracts
Despite their case-specific nuances, notarial property transaction contracts display a systematic and
recurring structure, making them an ideal subject for our model fine-tuning efforts. These contracts
typically comprise an incipit, a body, and a conclusion, in addition to individually added stylistic enhancing
elements. The contract’s blend of fixed structure and case-specific detail makes them too diverse for
regular software engineering yet show sufficient recurring patterns for effective learning by the currently
available LLMs.
As mentioned the incipit serves as the contract’s opening and specifies the notary’s identity, the place and

Page 2

https://dsn.notariato.it/

LLM for notary
documents

the date of the contract. The body to follow contains a set of clauses. The type and quantity of clauses
present both vary with the type of contract. The contract is ended with a conclusion that involves the
participant’s signatures
In addition to the outline standardized structure, each contract contains individually chosen stylistic
clauses. However, those clauses are not essential for the contract’s legal validity. For this reason our
project will yet primarily focus on the essential clauses - those critical for the contract’s legal standing.

1.4 | Our approach
The approach that governs our project foresees that the user provides a single prompt that entails a short
description of the type of contract, the parties involved in the contract (including the notary), the goods
subject to the contract, and the peculiarities of the contract. While the model we train takes a single
prompt as an input and outputs a complete contract draft the inner workings of our model consist of a
set of sub-models each responsible for constructing one of the clauses the contract consists of. The overall
process is organized into two stages, as depicted in Figure 1.1.
The first step involves identifying and breaking down the information provided through the prompt
for each clause individually and distributing the information to the clause-specific sub-models. Each
clause-specific sub-model is then supposed to identify only the information relevant to the clause it is
supposed to construct and output the clause. The second step of the process foresees that a Python script
takes the output of the clause-specific models, brings them into the correct order, and aggregates and
outputs the final draft document of the contract.

Figure 1.1: Our approach

We chose this modular approach deliberately. By breaking down the process into smaller, focused tasks,
we mitigate the risk of ’model hallucinations’—errors that can arise when a single model is burdened with
processing and generating large amounts of text. Although this method may require more resources for
training each specialized sub-model, the benefit lies in the accuracy and coherence of the final contract
draft, tailored precisely to the user’s initial prompt.

Page 1

LLM for notary
documents

2 | Our path

2.1 | Data set
In our project, we faced the significant challenge of creating a comprehensive and accurate dataset for
notarial contracts in Italy, a task complicated by the limited and expensive access to existing contracts. To
overcome this, we embarked on developing a synthetic dataset. The process began with creating sample
prompts, each representing a distinct legal scenario, a task led by one of our group members well-versed
in legal matters. These prompts then served as a foundation for the sample clauses, each designed to
demonstrate an ideal response to the input information. Writing the sample clauses was divided among
the other project group members, who familiarized themselves with how to construct their assigned clauses
(we used [1] and [2] as sources). As mentioned earlier we limited our efforts to only clauses essential for
the contract’s validity.
In practical terms, we utilized Excel as a management tool for our generated data, as illustrated in Figure
2.1. Our initial data generation cycle yielded a dataset comprising 30 complete and legally valid example
contracts. These contracts encompassed 12 different clauses, culminating in a total of 360 crafted sample
clauses.

Figure 2.1: An extract from the actual dataset

2.2 | Formatting the Dataset
Once the dataset was prepared, the next step was to format it for fine-tuning, using the format desired by
OpenAI. In particular, we wanted to obtain a JSONL file consisting of as many rows as prompts, and for
each prompt a text of the type shown in Figure 2.2.

Figure 2.2: The desired format of the JSONL file

To do this, we exported the file as a CSV file and then used a Python script to convert it to JSONL.
We used a custom system message for each clause (for example, for the clause ”Comparenti” we used:
”LegalBot is a virtual assistant specialized in drafting the clause ’comparenti’, faithfully respecting the
format: list of all the parties taking into account the characteristics described in the main clauses”). We
used the prompts and completions from the dataset for prompts and completions.
We then created a JSONL file for each clause. At this point, we checked that the format was correct using
a Python script provided by OpenAI. This script also provided us with statistics about the length of the
dataset and a cost estimate.

2.3 | Fine tune the Model(s) using LLama
In the process of refining models for linguistic clauses using the LLAMA framework, we employed Google
Colab due to its suitability for computationally intensive tasks like fine-tuning. Our initial step involved
converting prompts and clauses into a format compatible with LLAMA’s requirements. Subsequently, we
conducted fine-tuning for distinct models tailored to each type of clause.

Page 2

LLM for notary
documents

Given the varied versions of the LLAMA model with different sizes and acknowledging the constraints
of the Colab environment, we initially opted for the 7b parameter model. However, due to suboptimal
performance, we transitioned to the 13b model. Despite this shift, the 13b model failed to yield satisfactory
results, as evidenced by the example output in Figure 2.3.

Figure 2.3: Input and output of the ”Comparenti” clause with LLAMA

2.4 | Fine tune the Model(s) using Gpt 3.5
To fine-tune the models, we used the OpenAI playground, which makes fine-tuning easy and intuitive. We
uploaded the JSONL file for each clause and used those to train the clause-specific models individually (in
Figure 2.3 the statistics for the ”Comparenti” clause are shown)

Figure 2.4: Fine tuning statistics for the ”Comparenti” clause

In general, we noticed an improvement in the Training Loss, the average error of the model on the training
data, in every model - a lower training loss indicates that the model can more accurately predict the
target output for each example in the training data. One limitation however is that we don’t have a
Validation dataset on which to test the model on. Consequently, we can’t clarify if the improved training
loss stems from model performance improvement or overfitting.

Page 3

LLM for notary
documents

2.5 | Create the final contract
After having created the dataset and trained each model on a clause the final step is to create the Python
script that merges the individually constructed clauses into a coherent final document. To accomplish
this, we will primarily utilize Python, the OpenAI API to ”call” the fine-tuned models and LaTeX. The
program essentially takes a brief description of the contract as input and utilizes this prompt -with slight
modifications for each clause due to prompt engineering—for each fine-tuned model. After collecting
all the outputs (written clauses), the program then proceeds to create properly formatted LaTeX code,
incorporating recurring elements such as collection number, registry number, introduction with date,
recurring clauses, and conclusion with signatures. This system allows the notary to modify the document
to individual needs and create the final PDF afterwards.

Page 4

LLM for notary
documents

3 | Conclusions

While our model drafts contracts, it is imperative to acknowledge that certain clauses exhibit inaccuracies,
signalling areas for improvement. Acknowledging this prompts us to reflect, draw lessons learned and
outline potential enhancements for future work on the model. The contracts generated by our system
showcase both successful and erroneous clauses, which underscores the complexity and nuances of legal
language and rules. As the quality of the model directly depends on the quality of the data it was trained
on expanding and refining the artificial dataset is crucial. Specifically this process entails a meticulous
review of incorrect clauses to enable targeted improvements.

Figure 3.1: On the left the prompt, on the right a page of the result

While expanding our synthetically generated dataset might be valuable, we believe that even more so
incorporating real-world data would significantly enhance the model’s accuracy. Furthermore, to accurately
gauge the model’s performance, creating a dedicated validation dataset is essential. This dataset would
serve as a benchmark for assessing the efficacy of the model.
Despite identified limitations, the foundation laid by our project is robust and scalable. The system’s
capabilities can be extended to encompass a broader spectrum of contract types beyond property purchase
and sale. In addition, engaging with legal professionals for insights, feedback, and collaboration would
further help us in gaining a deeper understanding and refine our approach accordingly.
In conclusion, we see this project as a stepping stone toward an AI-powered notary assistant. While
acknowledging current limitations, the aforementioned paths to improvement are clear and we are confident
that if followed will mitigate some limitations and increase the models performance and capabilities. We
see fortifying the dataset, incorporating real-world data, and systematically iterating on the model, as the
pathway to fine-tuning a LLM that seamlessly generates accurate notarial contracts across diverse legal
domains.

Page 5

LLM for notary
documents

4 | References

[1] Luca Iberati e Arturo Lovato Agostino Avanzini. Formulario degli Atti Notarili. 2022.

[2] Antonio Mattera Stefano Mazzeo. Prova scritta al concorso notarile. 2022.

Page 6

	Introduction
	Aim of the project
	Why Artificial Intelligence?
	Basic knowledge about notary contracts
	Our approach

	Our path
	Data set
	Formatting the Dataset
	Fine tune the Model(s) using LLama
	Fine tune the Model(s) using Gpt 3.5
	Create the final contract

	Conclusions
	References

